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Abstract 

The analysis of incommensurate structures is compu- 
tationally more difficult than that of normal ones. 
This is mainly a result of the structure-factor expres- 
sion, which involves numerical integrations or 
infinite series of Bessel functions. Both approaches 
have been implemented in existing computer pro- 
grams. Compact analytical expressions are known 
for special cases only. Recently, a new theory of 
generalized Bessel functions has been developed. The 
number of theoretical results and applications is 
increasing rapidly. Numerical properties and 
algorithms are being studied. A possible application 
of the generalized Bessel functions for incommen- 
surate structure analysis is proposed. These functions 
can be used to derive analytical expressions for 
structure factors and all partial derivatives for a wide 
class of incommensurate crystals. The existing pro- 
grams can be improved by taking into account some 
interesting numerical and analytical properties of 
these new functions, like recurrence relations, ana- 
lytical expressions for derivatives, generating func- 
tions and integral representations. A new class of 
special functions, suitable for dealing with incom- 
mensurate structures in a more analv:ical way, is 
emerging. 

I. Introduction 

We must notice, in that direction, that it is important 
.['or him who wants to discover not to confine himself to 
one chapter o.f science, but to keep in touch with 
various others. 

(Jacques Hadamard, 1945) 

Quasiperiodic structure analysis has become a 
reasonably well established branch of crystallogra- 
phy. Quasicrystallography has celebrated its 20th 
anniversary (see Janssen, 1992). About 20 years ago, 
during the 9th International Crystallography Confer- 
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ence in Kyoto, Japan, two contributions of prime 
importance were presented. In the first, de Wolff & 
van Aalst (1972) described the incommensurate (IC) 
phase of Na2CO3 using a higher-dimensional space 
group. In the same session, Janner (1972) presented 
the symmetry analysis of a vibrating crystal, using 
entirely the same formalism. This was the starting 
point for this new and rapidly developing field. 

The superspace-group theory, developed by de 
Wolff, Janssen & Janner (1981) has been extended 
and is now most frequently used in the analysis of all 
types of quasiperiodic structures: modulated (both 
incommensurate and commensurate) phases, compo- 
site (or intergrowth) materials and quasicrystals. This 
approach is well suited for diffraction-pattern analy- 
sis and structure refinement and is almost exclusively 
used in the corresponding computing procedures. 

The first working example of IC-structure 
refinement was reported by van Aalst, den 
Hollander, Peterse & de Wolff (1976). The crucial 
step in this direction was made earlier by de Wolff 
(1974). He derived the structure-factor (SF) formula 
for an IC structure with displacive and/or occupa- 
tional modulation within the framework of 
superspace-group theory. This formula, with minor 
modifications, is the basis for the analysis of all other 
IC structures. 

At this time, it became clear that IC-structure 
refinement was a computationally much more 
demanding task compared with ordinary structure 
refinement. The main reason was that, excluding 
special cases, the SF could,not be evaluated analyti- 
cally but only by numerical integration. It appears 
that this was common belief rather than a math- 
ematical proof. 

Nevertheless, many IC structures have been suc- 
cessfully refined using algorithms based on de 
Wolff's formula. Numerical difficulties were, at least 
partially, overcome and several program systems to 
refine IC structures are currently available. This field 
has developed to such an extent that standardization 
is inevitable. 

In this paper, we once more reconsider de Wolfrs 
formula and demonstrate that the crucial part of his 
expression is related to some open problems in the 
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theory of special functions. It is shown that, on the 
basis of some recent advances in the generalization 
of Bessel functions (BFs), the SF for a one- 
dimensional IC structure can be evaluated analyti- 
cally. 

2. Generalized Bessel functions 

As is well known, BFs are widely used in crystallo- 
graphic computing. They represent an important 
analytical tool in crystallographic statistics and 
direct-methods theory (see e.g. Giacovazzo, 1980). In 
IC-structure analysis, BFs are used to derive SF 
formulas. 

Here, a short overview of the so-called generalized 
Bessel functions (GBFs) is given. We follow the 
development of the theory formulated by Dattoli, 
Giannessi, Mezi & Torre (1990), and further 
developed by Dattoli, Torre, Lorenzutta, Maino 
& Chiccoli (1991), Dattoli, Chiccoli et al. (1991), 
Dattoli, Chiccoli et al. (1992) and Dattoli, Mari 
et al. (1992). Up to now, more than ten articles and 
preprints have been made available. 

GBFs can be thought of as a rather large set of 
functions sharing the same basic properties like 
recurrences, addition and multiplication theorems, 
expressions for derivatives etc. as ordinary BFs. One 
of the first functions of this type was introduced by 
Reiss (1980) to solve analytically some relativistic 
scattering problems. He considered the following 
function: 

,z¢ 

J,,(zl,  z2) = X J, ,-21(zl)Jl(Z2),  (2.1) 
/ =  - o c  

where J,,(z) is the ordinary cylinder BF of the first 
kind, and proposed that it be called a two-variable 
GBF. Both variables z~ and z2 are, in general, com- 
plex. Similar functions can be defined by replacing 
one or both functions in the products by l , ( z ) ,  a 
modified cylinder BF of the first kind. 

Although the above function is defined as a sum of 
products of ordinary BFs, it shares with them many 
well known properties. For example, all the partial 
derivatives are expressed by functions of the same 
kind: 

O J,, _ ½(J,,-k -- J,,+k), k = 1, 2. (2.2) 
OZk 

Also, the following recurrence relation holds: 
2 

2n J,, = Z k Z k ( J , - k  + J,,+k). (2.3) 
k = l  

The well known sum rules can be generalized. For 
example, 

:x ae 

Z J, ,= Z j ,2= 1. (2.4) 
n : -- ~ n = m ~ 

Finally, the integral representation is expressed thus: 

1 
J,,(:l,:2) = 2~ _fdq~ 

x exp[i(z~sinq~ + z2sin2cp - nq0]. (2.5) 

Many more interesting properties of this function 
and other GBFs have been derived so far. Only some 
selected results are presented here. 

To follow the convention used in the original 
papers mentioned above, no new symbols are intro- 
duced for the new functions. Instead of a definition, 
variables and other relevant parameters will be 
indicated. This is because of the number of new 
GBFs, which is potentially unlimited. 

To better understand why this function can be 
called a GBF, it is instructive to compare it with the 
Neumann addition theorem (see e.g. Watson, 1958) 
for ordinary BFs: 

J,,(zl + z2) = X J, , - i (Zl) . l l (z2) .  (2.6) 

The new function can be considered as a first step 
beyond this addition formula. This is because of the 
charactistic 'jump' in the summation indices, which 
in turn comes from the anharmonicity apparent in 
the integral representation. 

An important step towards a consistent theory of 
GBFs (see Dattoli, Giannessi, Mezi & Torre, 1990) 
was the introduction of the more general definition 

J,,(Zl,Z2; t ) =  Y. tIJ,,_21(Zl)Jl(z2). (2.7) 
I = - o o  

This function, called a two-variable one-parameter 
GBF, has properties similar to the previous one. 
Both the variables zl and z2 and the parameter t are 
again complex in general. Expressions can be derived 
for all partial derivatives (including those with 
respect to t) as 

O J,, 
- (1/2)(  t k -  IJ, , -k  -- t l -~J , ,+k) ,  (2.8) 

OZk 

oJ. 
- (z2/2)(J, ,_ 2 - J,, + 2It 2) (2.9) 

Ot 

and the following recurrence relation: 
2 

2nJ,, = X k z k ( t k - I J , , - k  + t l - kJ , ,+k) .  (2.10) 
k = l  

The integral representation of this function is 

J,,[z~,z2; exp (i0)] = ~ _ f d ¢  exp [i(z~ sin 

+ z2sin(0 + 2q~) - n~0)]. (2.11) 

Here, the second harmonic is shifted with respect to 
the first. 

As before, this new function can be considered as 
a step beyond the second addition theorem, i.e. the 
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Graf formula: 
~c 

t #J,,(,-)= Z flJ,,-i(zl)Jl(z2), (2.12) 

where 

z = [ z ~  + z~ + zlz2(t 2 + l)/t] '/2, 

s = [(zl + z2t)/(zl + z2/t)] 1'2 

The new GBFs can be defined in many different 
ways. For example, one can modify the indices, thus 
adding much more flexibility. Some selected 
examples of GBFs studied in detail so far are: 

o o  

~'"~J...,(z,.z~)= E 

(""q)Jn.m(zJ,z2;t) = Z 
l ~ - - o o  

~m)J,~(z,,z2;l) = Z 

J,-,.,(z,)J,,,+q~(z2), (2.13) 

ttJn_.,.l(Z,)Jm+qt(Z2), (2.14) 

flJ,-ml(zl)Jl(z2). (2.15) 
/ ~  - - o o  

Recently, Dattoli, Chiccoli et al. (1992) pointed 
out yet another mathematical origin of GBFs. They 
show that the well known Kelvin functions can be 
interpreted as a precursors of GBFs. 

Let us consider two relations: 

ber,(~)= X ( 1" +/ - ) J,+21(z)121(z), (2.16) 

oe 

bei,(2)= Z ( -  1)"+'J,,+2,+~(z)12,+~(z), (2.17) 
1 = - - o ¢  

where ~ = z2 ~'2. It is easy to see that both Kelvin 
functions are special cases of GBFs defined above: 

ber,(r) = ( - 1)"~- 2/z~J,.o(z,iz), (2.18) 

bei,,(~) = i ( -  1)"+ t~-2/2)J~+ ~.~(z,iz). (2.19) 

Furthermore, one can also define an important new 
class of GBFs by replacing one ordinary BF by a 
modified one: 

o o  

~")J,(z,,z2;t)= X t lJ,- , , , (z ,) l l(z2),  (2.20) 
l = - cx~ 

and establish that 

ber,(~) = ( - 1)" ~[~-')J,(z,z;i)], (2.21) 

bei,,(z) = ( - 1)" 3J[ ~- ~J,(z,z;i)], (2.22) 

where R, and 3J mean the real and imaginary parts, 
respectively. 

We would like to mention here that the GBF 
defined above appears also in the SF expression for 
IC structures (Paciorek & Kucharczyk, 1985) if the 
modulation-function amplitude and phase fluc- 
tuations are explicitly taken into account, a step 
beyond de Wolff's original formula. 

It is possible to construct GBFs with more vari- 
ables and parameters. For example, one can define 

the following three-variable two-parameter GBF 
starting from the previously defined two-variable 
one-parameter one: 

J,,(zl,z2,z3;tlt2) = ~. t~J,,_ 31(zl,z2;tl)Jl(z3). (2.23) 
I = - o e  

Further extensions are illustrated by the following 
two examples: 

J,({Z}M) = ~'. J,(ZM)J,_ M,({Z}M-,), (2.24) 
1 =  - - o e  

J,,({Z}M;{t}M-,) = ~'. [tiM-,J,(ZM) 
I = - - o o  

x J,,_ M,({Z}M-,;{t}M- 2)], (2.25) 

where the following short notation was introduced: 

{z}M=(z,,...,xM), 
{t}M=--(t , , . . . , tM).  

With similar definitions for modified GBFs, the 
following generalized Jacobi-Anger expansions can 
be derived: 

~ exp (inO)J.({z}M) = exp ~'. izk sin kO , 
n = - ~  k = l  

(2.26) 

X exp (inO)I,,({z}~) = exp zk cos kO , 
n =  - oo k =  I 

(2.27) 

It is now clear that these new functions are perfec- 
tly suited to deal with anharmonic IC structures, 
replacing the ordinary BFs used so far. It is the main 
purpose of this study to demonstrate this. 

3. Generalized Jacobi-Anger expansion 

The theory of GBFs has become a rapidly 
developing new field of mathematical analysis. Not 
only do they provide numerous new useful analytical 
expressions but, which seems to be equally impor- 
tant, this theory provides many new analytical tech- 
niques to tackle various computing problems. The 
development is strongly stimulated by physical appli- 
cations. This means that some GBFs are studied in 
detail, whereas others are only briefly mentioned. 
For example, the function J,(z~,z2;i) is a solution of a 
Schr6dinger-type equation and was studied more 
deeply than the others. 

Within this theory, it is possible to construct a 
suitable GBF for a particular application, following 
a variety of examples published so far. Such an 
approach is adopted here to construct a GBF suita- 
ble to evaluate analytically the SF for an anharmonic 
IC structure. 
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Let us consider the following truncated trigonome- 
tric series with complex coefficients: 

N 

XN = X (Zk sin k~OZk cos k~o). (3.1) 
k = l  

Our first objective is to construct the following series 
expansion: 

o o  

exp (ixu) = Z /,({Z,z}N) exp (in~o), (3.2) 
n = - - o o  

where the following notation is introduced: 

{Z,Z}N = (Z,,z~ . . . . .  ZN,ZN). (3.3) 
Anticipating an application of the Graf theorem (see 
Watson, 1958), let us define the following quantities: 

17Or k = ( Z  2 + z2) I/2, (3.4) 

Ok = ( Z k  "[- i zk) /mk,  ( 3 . 5 )  

where k = 1, . . . ,  N. 
The common approach is to use the following 

infinite sum of products involving ordinary BFs: 
N 

exp (iXN) ---- ~ Pk(Zk,Zk) ,  ( 3 . 6 )  
k = l  

o o  

Pk(Zk,Zk) = Z J,,(wDO~exp(ikn~o). (3.7) 
n ~ - - o e  

This approach to the analysis of anharmonic IC 
structures has been developed by Petri6ek, Coppens 
& Becker (1985). An elaborate algorithm to evaluate 
this expression numerically was proposed by Petri- 
6ek, Mal~, & Cisa~ov~ (1991) and an extension to a 
higher-dimensional IC structure was given by 
Petri6ek & Coppens (1988). 

In the harmonic case ( N =  1), the result is the 
familiar Jacobi-Anger expansion with the coeffi- 
cients 

j , ( Z ~ , z , )  = J , ( w l ) 0 7 .  (3.8) 

Because both even and odd terms are included in the 
trigonometric series, this coefficient is not just the 
BF, but the BF multiplied by a complex number to 
the power equal to its order. This is quite frequent in 
many other applications. Furthermore, in our case, it 
is more convenient to cons ide r / ,  as a function of ZI 
and z~ rather than as a function of w'~ and O1. 

Let us consider the case where N = 2. Using the 
GBF defined by (2.7) in the previous section, the 
following expansion coefficients can be deduced: 

/,({Z,z}2) = J,,(wt,w'z;02/O~)O7. (3.9) 

The properties of this function have been studied in 
detail owing to its many physical applications. 

The crucial observation is that this extension is a 
first step of the following recurrence relation: 

o o  

/ n ( {Z ,Z}N)  = E [ " / ' (ZN'ZN) / n - N I ( { Z ' Z } N - I ) ] "  
I = - ~ e  

(3.10) 

Thus, the suitable GBF can be constructed for an 
arbitrary finite value of N. 

The partial derivatives can be derived and are 
expressed by the same type of functions as 

a / n  
- ( 1 / 2 ) ( / , , - k  --  / , , + k ) ,  ( 3 . 1 1 )  

OZk 

07 ,, 
--  ( i / 2 ) ( / , , - k  --  . / , , + k ) ,  ( 3 . 1 2 )  

OZk 

where k = 1, . . . ,N and the following recurrence rela- 
tion holds: 

N 
2n / , ,  = Z k (Z~ / , , - k  + Z~ /,,+k), (3.13) 

k = l  

Z k  = Zk +-- iZk. (3.14) 

For the derivation, the following identities were used: 

Off l = {Z~k - iZk l /~kJ -- Z k  -- , (3.15) 

a'l~r k Z k a O k O k 
OZ k 17or k OZ k iZk v~k (3.16) 

0 a~r k Z.._k k OOk -- iZk Ok , (3.1 7) 
OZk W'k' OZk 

where k -- 1 . . . .  , N. 
For other applications, not excluding crystallo- 

graphic ones, it may be more convenient to consider 
/ , ,  as a function of the Wk and Ok variables. In that 
case, the partial derivatives are 

0 / , ,  
- -  ( O k ~ 2 ) ( /  n - k  - -  I n + k / O ~ ) ,  ( 3 . 1 8 )  

O ~r k 

O/ ,, 
--  ( W k / 2 ) (  / , , - k  + / , ,+k/O~k),  ( 3 . 1 9 )  

ao~ 
where k = 1 . . . . .  N and the recurrence relation reads 

N 

2n/ , ,  = X k~rk(Ok/ , , -k  + /,,+k/Ok). (3.20) 
k = l  

Finally, the following integral representation can 
be derived: 

1 
.f d~o exp ( i X N  --  in~o). (3.21) .. , ( { Z , z } ~ )  = ~ _ 

This type of integral appears in the general SF 
formula for any one-dimensional IC structure. It can 
thus be interpreted as an integral representation of a 
new special function, which can be called an N- 
variable N-parameter GBF. 

In IC-structure refinement, this integral has to be 
evaluated numerically for an anharmonic structure. 
We are aware (Maino, 1993) that research is in 
progress on algorithms to evaluate GBFs. Their 
availability will eliminate the need for time- 
consuming numerical integration. Existing algo- 
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rithms can be improved by taking into account some 
analytical properties of these functions, especially the 
expressions for partial derivatives. 

4. Modulation functions 

The characteristic feature of any IC structure is the 
presence of periodic distortions, called modulation 
functions (MFs), which affect virtually every param- 
eter used in the conventional structure description. 

Let us consider a parameter p of the atom/.~. In an 
unmodulated structure, the value of this parameter is 
pAt. If this parameter is affected by a modulation, a 
real-valued periodic function is added to it: 

P A t ( X 4 )  = fiAt a t - / ~ A t ( X 4 ) ,  ( 4 . 1 )  

where 7~4 is the so-called internal coordinate. The 
period of this function is unity: 

#At(~4 + l) = #At(~4) (4.2) 

and, in most cases, following de Wolff's original 
assumption, their average value over the whole 
period vanishes: 

I 

f d x 4 f f A t ( x 4 )  = (p~At> - - - -  0 .  ( 4 . 3 )  
o 

A simplified notation for integration over the inter- 
nal coordinate is also introduced. 

MFs are represented by truncated Fourier or trig- 
onometric series expansions. If the average param- 
eter value is to be considered as a part of the M F, 
the expression is 

where 

N 

PAt()~4) = Z ,-,,"At"'"--, (4.4) 
I t  = - -  N 

pAt - p~, P£,, = p2*, 

* means the complex conjugate term and 

to = exp (27r/~4). (4.5) 

Note that the zeroth-order term is equal to the 
average value. 

Sometimes, it is more convenient to separate the 
average value and use a slightly modified expression 
for the intrinsic part of the MF: 

N 
At ~g n ~  fiAtC~4) = ~" (p~to"+ p,, to ). (4.6) 

n=  I 

The most convenient form is the following one: 
N 

At,.'," At,(" , fiAtC~4) = ~'. (p,, s,, +p,, ~,,), (4.7) 
?1= ] 

where 

s,, = sin (2~rnTf4) = $ (to"), (4.8) 

c, = cos(27rn~4) - :~'~(to"). (4.9) 

This was also de Wolff's preferred choice. 

Another form is to introduce the amplitude and 
phase of MF explicitly and use one of the following 
expressions: 

N 

fiAt(x4) = Z P~ sin [2~-(n~4 + ~,~,)], (4.10) 
n = l  

N 

PAt(X4) = E P~ COS [2"rr(n24 + ~o~,)]. (4.11) 
/'1~ [ 

This form is suitable for analysis of the influence of 
amplitude and phase fluctuations, leading to the new 
form of thermal displacement parameters in IC 
structures. 

In the above expressions, all parameters labelled 
by the atom index ~ and harmonic order n are 
adjustable parameters. They have all been used so far 
in practice. 

In order to find the value of any parameter for an 
atom located in any cell (n~, n2, n3) of the average 
structure, the internal coordinate must satisfy the 
relation 

3 

7~4 = 2-rr ~" qi(~'~ + n;). (4.12) 
i = 1  

In all subsequent sections, this convention is 
adopted, which also leads to the simplest form of SF 
formula. 

In some cases, it may be useful to adopt the 
convention proposed by Petri6ek et al. (1985) to 
handle rigid-molecule modulation. In these cases, the 
SF has to be changed accordingly. 

5. de Wol frs  structure factor 

In this section, we reconsider the SF expression for 
an IC structure, restricting ourselves to one- 
dimensional modulation and ( 3 +  1)-dimensional 
superspace-group symmetry, as in de WolfPs original 
paper. However, we do not restrict ourselves to 
harmonic modulation but consider the case when 
atomic positions, occupation and thermal- 
displacement parameters are simultanously distorted 
by possibly anharmonic MFs. 

Details concerning the superspace-group symmetry 
are not discussed here, only some notation is intro- 
duced (see Jannsen, Janner, Looijenga-Vos & de 
Wolff, 1992). An essential feature of this new kind of 
symmetry is the nontrivial symmetry transformation 
of a scalar MF (e.g. occupational and/or isotropic- 
thermal-displacement-parameter modulation). In 
ordinary structures, such a parameter is the same for 
all symmetry-equivalent atoms. 

Let us consider the structure with superspace- 
group symmetry operations labelled g. Our objective 
is to evaluate the SF for a given reflection with 
indices h~, i = 1 . . . . .  4. 

The most convenient way to deal with symmetry 
is to apply the symmetry operations to reflection 
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indices whenever possible. This is similar to ordinary 
crystals (see Giacovazzo, 1992). 

Let us introduce the following notation for the 
transformed reflection indices: 

4 

= Z R~.h, m(g) =-- h~, (5.1) 
/ =  I 

and the real indices in the three-dimensional physical 
reciprocal space: 

H~ = h~ + h~q,, i = 1 . . . . .  3, (5.2) 

where qi are the modulation vector components. 
In some cases, an alternative notation is used for 

the symmetry-transformed satellite reflection (fourth) 
index, as introduced above. 

The complex factor owing to a nonprimitive trans- 
lation is denoted: 

4 

/2 ~ = exp (2n-i X h,r~). (5.3) 
i = 1  

As a next step, all quantities related to the displa- 
cive modulation are introduced. This kind of modu- 
lation deserves special attention, owing to the special 
role of atomic coordinates. In our approach, the 
average parameters are separated from M Fs. 

Thus, the geometrical part of the SF is separated 
into two factors. The first one is related to the 
average atomic position: 

3 

exp (2rri ~ h,g~,") -- exp (i2-"'~). (5.4) 
i = 1  

The second one is explicitly dependent on the inter- 
nal coordinate: 

3 

exp (2rri ~ H~/£~ ") =__ exp(i)gu.~). (5.5) 
i = l  

The important difference is the use of hf, in the 
average coordinate expression, in contrast with Hf in 
the modulation part. 

In a similar way, the modulation of anisotropic 
thermal displacement parameters is introduced. The 
first part is the ordinary anisotropic temperature 
factor: 

3 

e x p ( -  ~ I-g~B~H~) = exp(-/3u'e) .  (5.6) 
i , j =  I 

The second one is the actual modulation: 
3 

g - - t ~  g ~ ~ ,g ) . e x p ( -  Z H i # o H ~ ) -  e x p ( -  (5.7) 
i , j =  I 

Note that H~ are now used in both expressions. 
Using the notation introduced above, we can write 

down the SF expression, consequently separating 
parts depending explicitly on the internal coordi- 
nate. We also separate the occupational modulation, 
allowing the zeroth-order term to be part of the 
MF for this parameter. In addition, the factor 

resulting from nonprimitive translations is used 
separately. 

The contribution from an atom # transformed by 
symmetry operation g is proportional to the product 
of two parts. The first one is 

F "'x = e x p ( ~  ~'~ -/3~"~). (5.8) 

The second one results from modulations of coordi- 
nates and thermal displacement parameters: 

fi""~ = exp (i,I 7"~-/3""~). (5.9) 

The modification for isotropic temperature Factors is 
straightforward and is not discussed here. 

To include the occupational modulation, it is con- 
venient to introduce the following quantity: 

M 

WU.X= V px(Pu.~w'",x'+"), (5.10) 
n =  - M 

where M covers the range of occupational-modu- 
lation harmonics. 

This is the crucial part of thc SF expression. With 
the assumption that the occupational M F has the 
form of the standard Fourier expansion (4.4) of a 
real function, the SF is the following finite sum of 
integrals over the internal coordinate. 

F(h)  = 72 M"f"g~'F"~W "~, (5.1 1) 

where the sum covers all symmetry-independent 
atoms/x and symmetry operations g, M u and.)C~" are 
the multiplicity and the complex scattering factor of 
atom #,  respectively, and all quantities are evaluated 
for the reflection with four indices hi, i = 1 . . . .  4. 

The following conclusions can be drawn from the 
expression above. First, that the SF can be evaluated 
analytically, if only an occupational modulation 
described by the standard Fourier expansion is 
present. Thus, all the difficulties come from the 
remaining modulations. Furthermore, if an analyti- 
cal solution exists for displacive and/or thermal dis- 
placement modulation, it will also exist if an 
occupational modulation is added. 

We can also recognize that 

(FU'ew"') = [ T(Pu'X)]m, (5.12) 

where / means the Fourier transform. This relation 
has been used to derive a new algorithm to evaluate 
this expression. Instead of standard numerical inte- 
gration procedures (e.g. Gaussian integration), other 
very efficient and accurate algorithms for Fourier- 
coefficient evaluation can be used (see Paciorek & 
Chapuis, 1992). The goal here is to demonstrate the 
existence of an analytical solution. 

As a first step, let us formulate the general condi- 
tion for which such a solution can be derived. One 
observes that the periodicity of MFs leads also to the 
periodicity of the subexpression above. This means 



200 G E N E R A L I Z E D  BESSEL FUNCTIONS 

that 

P " "  = Z F~ -~o~'''. (5.13) 
i t / =  - ¢ , ~  

If such an expansion can be evaluated analytically, 
then 

(FU'Xto"') = FU_'x,,,. (5.14) 

In such a case, the SF can be also evaluated analyti- 
cally and reads 

M 

W,.~ = ~" p ,  r',,~ (5.15) ~t n Jt _ m ( l ~ )  - -  n "  

n = - m  

The existence of this solution depends only on the 
properties of the MFs used to describe displacive 
and/or thermal-displacement-parameter modulation. 

Towards the end of this section, the notation is 
simplified by dropping all irrelevant indices from the 
SF subexpressions. We establish a relationship 
between these two types of modulation. 

Let us assume the existence of the following 
expansion for displacive modulation: 

oe 

exp (ix) = Z GmO() t°m , (5.16) 
m =  - o e  

and of the similar one for the thermal displacement 
modulation: 

or) 

e x p ( - f l )  = Z T m ( - f l )  O)m. (5.17) 
m =  - o e  

Allowing the complex arguments in the expansion 
coefficient functions, the common expansion of the 
form 

oo 

e x p ( i x - / 3 ) =  Z F,,,(X 4- i/3)w m, (5.18) 
m = - - ~ o  

will necessarily fulfil the following sum rule: 
zc  

Fm(X + i /3)= ~'. GtO()T,,,_,(i/3). (5.19) 

Furthermore, if only one type of modulation is 
present, the following relations should be satisfied: 

GmO() = FmO(), (5.20) 
T,, , (-  /3) = F,,(i/3). (5.21) 

In the above equations, one can easily recognize the 
familiar properties of BFs, e.g. addition theorems, 
imaginary argument transformations, relating ordi- 
nary and modified BFs and generating functions. 
However, the previous sections have shown the exis- 
tence of a much wider class of functions with the 
same properties. 

6. Analyt ica l  solution 

To obtain an analytical solution, it is convenient to 
consider the SF as an implicit function of the refined 

parameters and introduce some intermediate com- 
plex quantities. In this section, only the contribution 
of the atom generated by the symmetry operation g 
from the independent a tom/z  is considered. 

Let us illustrate this approach on the part of the 
SF depending only on the average structure param- 
eters and define 

~u.g + i/3,.e = 3u.x. (6.1) 

It is easy to recognize that 
3 

~,3 u'x = 2rr X ~Y~', (6.2) 
i = 1  

3 

3J3"'x = Z H~ H~ Re . . , . . ,  _,,. (6.3) 
i . . j=  I 

For the subsequent calculations, the following partial 
derivatives are required: 

03" "~ 

- 2rr~,  (6.4) 
OYt' 

03u'e 
- -  i H i H  ~. (6.5) 

OB~ 

One can easily see that this part of the SF is an 
explicit function of the intermediate complex argu- 
ment and has the simple form 

F "'~ = exp (i3"'~), (6.6) 

with trivial first derivative 

0F~.g 
- i F "'g. (6.7) 

03" "~ 

This rather formal approach becomes crucial if 
the modulation-dependent part of the SF is con- 
sidered. 

If the analytical form of both MFs is the same, 
both types of modulation can be combined into one 
MF expression with complex coefficients. The real 
part will be related to the displacive modulation and 
the imaginary part to the modulation of the thermal 
displacement parameters. 

Furthermore, even and odd terms can be com- 
bined separately if (4.7) is the chosen form of both 
MFs, as is assumed here: 

N 

,6" = Y" (p~'"s,, + p~,'"c,), (6.8) 
k = l  

where N is the highest harmonic order and zero 
padding is assumed if the range of harmonics in the 
displacive modulation is different from the thermal- 
displacement-parameter modulation. 

Let us define the set of harmonic-order-dependent 
complex quantities: 

N 

)("'g + il ~"'~ = Z (Z~'~sk + Z~'%k), (6.9) 
k = l  
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where (see § 5) 
3 

~ Z ~  ''g = 2zr E H~,.x~fl, (6.10) 
i = 1  

3 

] J Z ~  "g = 2 f 4 g u g u ~ , , s  (6.11) J~ i " l j  L'i] k ,  
i , j= 1 

3 

~ z ~  "~ = 2 ~  2 lt~x~j,", (6.12) 
i = 1  

3 

~JZ~ " g =  2 l.lgl.lgi~l.t,c (6.13) l , i , ' l j U ~ L k  
i , j =  I 

and the partial derivatives with respect to the M F 

, 

0.5 

_ , o ~ ~ ~ o  ~ _ ,o -~~  ~ / o  
o -~ . . ~  T/-o.s 

x 5 - " ~ _ 1  O_ 1 

(b) 

0.~5~ 1 0.2 O. 

_o W ~ / o ~  - 0 . 2 5 ~  

o 

~ ~ - 
0 0.5 

x 5 x 5 

(c) 1 0 - (d) 1 0 1 

0.5 
O. 1 

0 
- --0' 51~'X~V_- 0.5 - 0.5 0.5 

- 1 0  ~ 0 y - 1  y 
- 5  

o ~  ~ I/-o.~ 
-1 -1 

(e) 1 0 ( f )  1 0 

Fig. I. Generalized Bessel functions J,,(x,y), n = 0, i, 2 [(a), (b), (c)] and J,,(x,y), n = 0, !, 2 [(d), (e), ( f ) ] .  I f  y =  0, both reduce to the 
well known J,,(x). 
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parameters are 

O Z~ "~ O z~ "g 

ax~z ~ ax~ /  

OZ~ "g Oz~ "g 

OB,j",~ OB0-Uf 

= 2rr/~,., (6.14) 

= i l-l~ H~. (6.15) 

Note that the part of the SF depending on the 
modulation of atomic coordinates and thermal dis- 
placements is now 

P- .g=  exp (i,f ~' ,g-/~"~) (6.16) 

and has precisely the form of a generating function 
for the GBF studied in detail in § 3. This function 
can replace an ordinary BF used so far. 

The main result of this study can thus be expressed 
in the form 

F(h) = ~ MUfUI'2sb"~'gW ~''g, (6.17) 
bt,g 

M 

W u'g= E e~/ - , , ,~) - , ({Z~"g,z~"g}N)  (6.18) 
n =  - m  

and all nontrivial partial derivatives are derived from 

O / , ,  = ( 1/2)(/,,, _ k - / ,,, + I,) (6.19) 
OZ~' 'g 

O /% 
- -  = ( i / 2 ) ( / '  ,,, _ k + Y . ,  + J,), (6.20) 

where m = - r e ( g ) - n ,  n = 1, . . . ,  M and k = 1, . . . ,  
N. 

The above expressions constitute an analytical 
solution for the SF and all its partial derivatives with 
respect to both average structure and all M F param- 
eters for all one-dimensional IC structures studied so 
far. The only restriction is that the number of har- 
monics in the MFs is finite. 

The SF formula derived above has the same simple 
form as for harmonic displacive modulation. If the 
first harmonic is to be added to the thermal dis- 
placement parameters, the only change is to use BFs 
of complex rather than real argument. If higher 
harmonics are to be added, the ordinary BFs are to 
be replaced by (suitable) GBFs. 

The evaluation of BFs is not particularly difficult 
(see Press, Flannery, Teukolsky & Vetterling, 1992), 
even in the case of complex variables. We expect 
similar algorithms for GBFs in the near future, 
especially for the first few harmonics. 

To illustrate GBFs suitable for crystallographic 
applications, two such functions (see § 2) are pre- 
sented in Fig. 1. The first one, J , (x ,y )  can be an aid 
to study the influence of the second harmonic in 
atomic displacements. The second one, J , (x ,y ) ,  plays 
a similar role in the study of the effect of the second 
harmonic on the thermal displacement parameters. 

7 .  C o n c l u d i n g  r e m a r k s  

The application of the GBFs in IC-structure analysis 
as proposed here can be potentially useful in several 
areas of research. The obvious application is to 
improve further the commonly used computing pro- 
cedures, where an efficient evaluation of the SF is 
important (e.g. structure refinement). 

de Wolff's formula, recast in terms of GBFs, 
retains its former simplicity but gains a novel mathe- 
matical interpretation. Many new formulas and tech- 
niques offered by the GBF theory can lead to better 
understanding of IC structures, as described by the 
superspace-group approach. 

The possibility is not excluded that the availability 
of an analytical formula can be useful in the solution 
of other problems. We mention here the open ques- 
tions in the formulation of direct-methods theory for 
IC structures, where even the SF normalization is a 
quite complicated problem. The very rich GBF 
theory can probably be useful here. 

Conversely, IC-structure analysis is another field 
where GBFs can be very useful and even some new 
suggestions for further studies within this theory can 
be inferred. GBFs could perhaps be used in other 
areas of computational crystallography. Work is in 
progress on the applications of GBFs in crystallo- 
graphic statistics. 

We are greatly indebted to Drs A. Torre, G. 
Maino and C. Dattoli for helpful comments, pre- 
prints and kind interest in our study. Financial sup- 
port from the Swiss National Science Foundation to 
WAP is gratefully acknowledged. 
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Abstract 

Eliminating the N atomic position vectors rj, j = 1, 
2, ..., N, from the system of equations defining the 
normalized structure factors EH yields a system of 
identities that the En's must satisfy, provided that 
the set of EH's is sufficiently large. Clearly, for fixed 
N and specified space group, this system of identities 
depends only on the set {H}, consisting of n 
reciprocal-lattice vectors H, and is independent of 
the crystal structure, which is assumed for simplicity 
to consist of N identical atoms per unit cell. How- 
ever, for a fixed crystal structure, the magnitudes 
[En] are uniquely determined so that a system of 
identities is obtained among the corresponding 
phases ~OH alone, which depends on the presumed 
known magnitudes ]EHI and which must of necessity 
be satisfied. The known conditional probability dis- 
tributions of triplets and quartets, given the values of 
certain magnitudes [E I, lead to a function R(~o) of 
phases, uniquely determined by magnitudes ]El and 
having the property that Rr < ~ < RR, where Rv is 
the value of R(~o) when the phases are equal to their 
true values, no matter what the choice of origin and 
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enantiomorph, and RR is the value of R(q~) when the 
phases are chosen at random. The following conjec- 
ture is therefore plausible: the global minimum of 
R(q~), where the phases are constrained to satisfy all 
identities among them that are known to exist, is 
attained when the phases are equal to their true 
values and is thus equal to Rr. This 'minimal prin- 
ciple' replaces the problem of phase determination 
by that of finding the global minimum of the func- 
tion R(q~) constrained by the identities that the 
phases must satisfy and suggests strategies for 
determining the values of the phases in terms of N 
and the known magnitudes IEI. Equivalently, the 
minimal principle leads to the solution of the (in 
general redundant) system of equations satisfied by 
the phases ~'n. 

Introduction 

The structure invariants, in this paper only triplets 
and quartets, link the observed magnitudes ]E~ with 
the desired phases ~ of the normalized structure 
factors E. The traditional techniques of direct 
methods use the conditional probability distributions 
of the structure invariants to obtain estimates of 
their values and thus relationships among the indivi- 
dual phases having probabilistic validity. These rela- 
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